Synthesis of amino acid derivatives of quinolone antibiotics†

Alan R. Katritzky,* Munawar Ali Munawar, Judit Kovacs and Levan Khelashvili

Received 14th January 2009, Accepted 17th February 2009 First published as an Advance Article on the web 31st March 2009 DOI: 10.1039/b900762h

Optically pure conjugates of quinolone antibiotics with naturally occurring amino acids are synthesized in 40-98% yields.

Introduction

The broad-spectrum quinolone antibiotics act on topoisomerase II (DNA gyrase usually of Gram-negative) or on topoisomerase IV enzyme (of Gram-positive bacteria) to inhibit DNA replication and transcription.¹⁻²

Porins (β -barrel proteins) mediate the entry of quinolones into cells, and quinolone antibiotics are often used to treat intracellular pathogens such as *Legionella pneumophila* and *Mycoplasma pneumoniae*.³

Oxolinic acid 1, nalidixic acid 2, cinoxacin 3, and flumequine 4 (Fig. 1), all first-generation agents, are currently widely used to treat Gram-negative bacteria (*e.g.* urinary tract infections and psoriasis) by dermal delivery.⁴ However, a major drawback is that their prolonged oral use causes gastrointestinal disturbances.

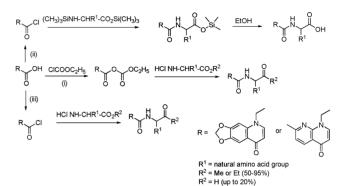


Fig. 1 Quinolone antibiotics.

Prodrugs formed from quinolone acids and amino acid esters are more lipophilic than the parent drugs,^{4a,5} and show enhanced *in vivo* antibacterial properties^{6,8,9} with pronounced therapeutic effects against *Pseudomonas aeruginosa*,¹⁰⁻¹¹ *Escherichia coli*,¹² *Staphylococcus aureus*¹² and *Salmonella typhi*,⁹ in addition to other wide-ranging biological activities comprising anti-allergic,⁷ antihypertensive,⁷ bronchodilating,⁷ and binding to bovine serum albumin.^{4a}

Literature preparations of quinolone amino acid conjugates include the use of ethyl chloroformate,^{4a,7,8,10,11} acid chlorides^{5,8} and mixed anhydrides (Scheme 1).⁹ Utilizing amino acid esters as coupling reagents, these methods provide quinolone–amino acid ester conjugates (yields range 50–95%) in reaction times of 5–24 h. However, coupling with free amino acids gave the target compounds in lower yields (20–50%).⁸

N-Acylbenzotriazoles¹³ are efficient coupling reagents for N-,¹⁴ C-¹⁵ and O-acylation.¹⁶ N-(Aminoacyl)benzotriazoles pre-

Scheme 1 Literature preparation of quinolone amino acid ester conjugates.

pared from *N*-protected α -amino acids were successfully utilized for synthesis of di- and tripeptides.¹⁷

We now report syntheses of amino acid conjugates of quinolones 1–4 by coupling the free amino acids 9–23, as well as dipeptide Gly–Gly 24 with benzotriazole-activated oxolinic acid 5, nalidixic acid 6, cinoxacin 7 and flumequine 8.

Results and discussion

Preparation of benzotriazole derivatives of quinolone antibiotics

Oxolinic 1 and nalidixic 2 acids, cinoxacin 3 and flumequine 4 were converted to their corresponding benzotriazole derivatives using a standard method.^{17b} Compounds 5–8 were obtained in 75–90% yields (Table 1), and are stable indefinitely at 20 °C.

 Table 1
 Preparation of acid benzotriazolides 5–8

Entry	Reactant	Product	Yield (%)	Mp (°C)
1	Oxolinic acid 1	5	75	229–232
2	Nalidixic acid 2	6	90	169-171
3	Cinoxacin 3	7	80	221-223
4	Flumequine 4	8	81	218-219

Preparation of oxolinic-amino acid conjugates

The coupling of **5** with free amino acids **9–23** in aqueous MeCN in the presence of Et_3N in 3 h resulted in the formation of oxolinic–amino acid conjugates **25–39** in 58–96% yields (Table 2). Benzotriazole-activated oxolinic acid **5** reacted with free dipeptide Gly–Gly **24** giving oxolinic–dipeptide conjugate **40** in 90% yield

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA. E-mail: katritzky@ chem.ufl.edu; Fax: +1 352-392-9199; Tel: +1 352-392-0554

[†] Electronic supplementary information (ESI) available: Experimental details for compounds **6–8**, **25–29** and **31–56**. See DOI: 10.1039/b900762h

Table 2 Preparation of oxolinic-amino acid conjugates

Et J

Entry	Reactant	Product	Overall yield (%)	Mp (°C)	Lit. overall yield (%)	Lit. mp (°C)	
1	Gly 9	25	78	296–298	4410	300	
2	L-Ala 10	26	82	257-259	188	267-269	
3	DL-Ala 11	27	71	257-259	25 ⁸	266-268	
4	L-Phe 12	28 ^b	72	213-215	a	_	
5	DL-Phe 13	29 ^c	75	248-249	a	_	
6	L-Met 14	30	74	193-194	a	_	
7	L-Leu 15	31	75	219-221	40 ¹⁰	204	
8	L-Ile 16	32	78	225-228	a	_	
9	L-Trp 17	33	61	167-171	a		
10	L-Ser 18	34	54	246-248	42 ¹⁰	247	
11	L-Cys 19	35	75	218-220	a	_	
12	L-Asp 20	36	82	238-239	407	221	
13	L-VaÎ 21	37	61	225-227	a	_	
14	L-Tyr 22	38	77	292-293	a		
15	Cystine 23	39	49	234-236	a		
16	Gly-Gly 24	40	77	282-284	a		

Ęt

Ęt

^{*a*} Compound is novel. ^{*b*} Retention time for **28** = 9.02 min. ^{*c*} Retention time for **29** = 9.16 and 9.68 min.

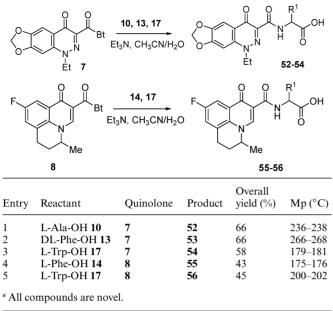
Et

Table 3 Preparation of nalidixic-amino acid conjugates

$\begin{array}{c} \overset{\text{Me}}{\underset{R^{1}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Me}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\overset{\text{Ne}}{\underset{R^{2}}{\atop_{R^{2}}{\underset{R^{2}}{\atop{R}}{\underset{R^{2}}{\underset{R^{2}}{R^{2}}{\underset{R^{2}}}{\underset{R^{2}}{R^{2}}{\underset{R^{2}}{\atopR}{1}}{\underset{R^{2}}{\atopR}{1}}}}}}}}}}}}}}}}}}}}}}}}$							
Entry	Reactant	Product	Overall yield (%)	Mp (°C)	Lit. overall yield (%)	Lit. mp (°C)	
1	Gly 9	41	75	259-260	5410	276	
2	L-Ala 10	42	81	251-253	a		
3	DL-Ala 11	43	88	252-254	50 ⁸	253-255	
4	L-Phe 12	44	86	213-215	a		
5	L-Met 14	45	58	164-165	a		
6	L-Leu 15	46	60	171 - 172	28 ¹⁰	168	
7	L-Ile 16	47	69	159-160	a		
8	L-Asp 20	48	39	238-239	547	207	
9	L-Val 21	49	54	182-185	a		
10	L-Tyr 22	50	70	140-142	a		
11	Gly–Gly 24	51	59	246-247	<i>a</i>		

Et

(Table 2). All novel compounds were characterized by ¹H-NMR, ¹³C-NMR and elemental analysis.


HPLC (detection at 220 nm, flow rate 0.5 mL/min, and 50% MeOH as solvent) showed a single peak for **28**. By contrast two peaks were observed for the corresponding racemic mixture **29**, confirming the enantiopurity of oxolyl-L-Phe **28**.

In the literature, oxolinic–amino acid conjugates were prepared either by (a) coupling of ester-activated oxolinic acid with amino acid esters (52–66%), followed by ester hydrolysis (66–90%)^{7,10} or (b) reaction of oxolinic acid chloride with free amino acids (18–25%) (Table 2).⁸ Our methodology allows the synthesis of oxolinic–amino acid conjugates in higher overall yields (average of 71% for 16 compounds *vs* literature average yield of 35% for 6 compounds), uses simple preparative and purification procedures, does not require anhydrous conditions, and is cost-effective.

Preparation of nalidixic-amino acid conjugates

Similarly, the coupling of **6** with **9–12**, **14–16**, and **20–22** afforded nalidixic–amino acid conjugates **41–50** in 40–98% yields (Table 3). The reaction of **6** with Gly–Gly **24** resulted in the formation of nalidixic–dipeptide conjugate **51** in 66% yield (Table 3). All products were characterized by ¹H-NMR, ¹³C-NMR and elemental analysis.

Previously, nalidixic–amino acid conjugates were prepared either (a) in three steps by the active ester method^{7,10} or (b) in two steps by the acid chloride method.⁸ Our two-step approach provides nalidixic–amino acid conjugates in better overall yields compared to those reported in the literature (Table 3) (average of 67% for 11 compounds *vs* literature average yield of 46% for 4 compounds).
 Table 4
 Preparation of cinoxacin– and flumequine–amino acid conjugates"

Preparation of cinoxacin- and flumequine-amino acid conjugates

In order to show the generality of benzotriazole methodology, we coupled amino acids with two other quinolone antibiotics: cinoxacin 3 and flumequine 4. Cinoxacin–amino acid conjugates 52-54 were obtained in 73-82% yields by reacting 7 with 10, 13, 17 in aqueous acetonitrile for 3 h (Table 4).

Under the same reaction procedure the coupling of benzotriazole-activated flumequine **8** with **14**, **17** afforded flumequine-amino acid conjugates **55–56** in 53 and 56% yields, respectively (Table 4).

Conclusions

In conclusion, we have developed a convenient and an efficient synthesis of nalidixic–, oxolinic–, cinoxacin- and flumequine– amino acid conjugates, utilizing a simple two-step route involving: (i) activation of the quinolone carboxylic acids as stable benzotriazole derivatives and (ii) coupling with free amino acids in aqueous media.

Experimental

Preparation of 7-(1*H*-benzo[*d*][1,2,3]triazole-1-carbonyl)-5-ethyl-[1,3]dioxolo[4,5-*g*]quinolin-8(5*H*)-one (5)

To a solution of 1*H*-benzotriazole (2.0 g, 16 mmol) in methylene chloride was added thionyl chloride (0.47 g, 4.0 mmol) at 25 °C. After 30 min oxolinic acid (1 g, 3.8 mmol) was added and the stirring was continued for 2 h. The precipitate was filtered off, and the filtrate was washed with water and evaporated to give a yellow solid (1.1 g, 3.0 mmol, 75%), mp 229–232 °C. ¹H NMR (300 MHz, DMSO-d₆) δ : 8.67 (s, 1H), 8.22 (t, *J* = 8.0 Hz, 2H), 7.79 (t, *J* = 7.8 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.52 (d, *J* = 6.5 Hz, 2H), 6.24 (s, 2H), 4.39 (q, *J* = 6.5 Hz, 2H), 1.40 (t, *J* = 6.6 Hz,

3H). ¹³C NMR (75 MHz, DMSO-d₆) δ : 171.7, 164.9, 152.5, 146.8, 146.2, 145.4, 136.1, 130.9, 126.2, 123.3, 119.9, 113.6, 113.1, 102.8, 102.7, 97.0, 48.7, 14.5. C₁₉H₁₄N₄O₄· $\frac{1}{2}$ H₂O, Calculated: C, 61.45; H, 4.07; N, 15.09, Found: C, 61.19; H, 3.73; N, 15.27.

General procedure for oxolinic-amino acid conjugates (25-40)

A mixture of 7-(1*H*-benzo[*d*][1,2,3]triazole-1-carbonyl)-5-ethyl-[1,3]dioxolo[4,5-*g*]quinolin-8(5*H*)-one **5** (181 mg, 0.5 mmol), amino acid (0.5 mmol) and triethylamine (101 mg, 0.13 mL, 1.0 mmol) in acetonitrile–water mixture (3.5 mL + 1.5 mL) was stirred at room temperature for three hours. The acetonitrile was removed under vacuum and the residue was acidified with concentrated HCl. The precipitate was filtered, washed with cold water, dried under reduced pressure and recrystallized from aq. ethanol to gave the corresponding product.

(*S*)-2-(5-Ethyl-8-oxodihydro-[1,3]dioxolo[4,5-g]quinoline-7-carboxamido)-4-methylsulfanylbutanoate (30). (170 mg, 87%), mp 193–194 °C. ¹H NMR (300 MHz, DMSO-d₆) &: 1.34 (t, J = 7.2 Hz, 3H), 1.93–2.13 (m, 5H), 2.50 (m, 2H), 4.43 (q, J = 7.2 Hz, 2H), 4.59–4.66 (m, 1H), 6.24 (s, 2H), 7.50 (s, 1H), 7.63 (s, 1H), 8.71 (s, 1H), 8.90 (bs, 1H), 10.53 (d, J = 7.7 Hz, 1H). ¹³C NMR (75 MHz, DMSO-d₆) &: 14.6, 29.5, 31.6, 48.9, 50.8, 96.7, 102.6, 102.8, 110.1, 123.1, 136.1, 146.2, 146.3, 152.6, 164.3, 173.2, 174.1. C₁₈H₂₀N₂O₆S, Calculated: C, 55.09; H, 5.14; N, 7.14, Found: C, 54.89; H, 5.06; N, 6.75.

Acknowledgements

We thank the Higher Education Commission of Pakistan for financial support to Dr. Munawar Ali Munawar, a post-doc fellow from the University of the Punjab, Pakistan.

References

- 1 C. Levine, H. Hiasa and K. J. Marians, *Biochim. Biophys. Acta*, 1998, 1400, 29–43.
- 2 J. Ruiz, J. Antimicrob. Chemother, 2003, 51, 1109–1117.
- 3 I. A. Critchley, M. E. Jones, P. D. Heinze, D. Hubbard, H. D. Engler, A. T. Evangelista, C. Thornsberry, J. A. Karlowsky and D. F. Sahm, *Clin. Microbiol. Infect.*, 2002, 8, 214–221.
- 4 (a) T. Aboul-Fadl and E. A. Fouad, *Pharmazie*, 1996, **51**, 30–33; (b) D. Galante, C. Pennucci, S. Esposito and D. Barba, *Drugs Exp. Clin. Res.*, 1985, **11**, 331–344; (c) P. A. Mardh, S. Colleen and K. E. Andersson, *J. Antimicrob. Chemother*, 1977, **3**, 411–416; (d) A. L. Barry, R. N. Jones, C. Thornsberry;, L. W. Ayers; E. H. Gerlach and H. M. Sommers, *Antimicrob. Agents Chemother*, 1984, **25**, 633–637; (e) S. R. Rohlfing, J. R. Gerster and D. Kvam, *Antimicrob. Agents Chemother*, 1976, **10**, 20–24.
- 5 D. V. Kohli, R. K. Uppadhyay, S. K. Saraf and K. K. Vishwakarma, *Pharmazie*, 1992, **47**, 57–59.
- 6 J. P. Sanchez, EU Pat., 304 087, 1989.
- 7 C. Laruelle, M. Lepant, and B. Raynier, Fr. Pat., 2 564 832, 1985.
- 8 JP Pat., 56 053 679, 1985.
- 9 T. S. Leonova, E. N. Padeiskaya and V. G. Yashunskii, *Khim.-Farm. Zh.*, 1987, **21**, 692–696.
- 10 K. Pongracz, J. Frank, G. Kulcsar, K. Medzihradszky, and L. Nadasi, HU Pat., 36 483, 1985.
- 11 K. Pongracz, J. Frank, G. Kulcsar, K. Medzihradszky, L. Nadasi, and G. Szokan, *HU Pat.*, 36 842, 1985.
- 12 E. A. Jefferson, E. E. Swayze, S. A. Osgood, A. Miyaji, L. M. Risen and L. B. Blyn, *Bioorg. Med. Chem. Lett*, 2003, 13, 1635–1638.
- 13 A. R. Katritzky, K. Suzuki and Z. Wang, *Synlett*, 2005, **11**, 1656–1665.
- 14 (a) A. R. Katritzky, L. Khelashvili, P. P. Mohapatra and P. J. Steel, Synthesis, 2007, 23, 3673–3677; (b) A. R. Katritzky, M. Wang, H.

Yang, S. Zhang and N. G. Akhmedov, *ARKIVOC*, 2002, viii, 134–142; (c) A. R. Katritzky, S. Hoffmann and K. Suzuki, *ARKIVOC*, 2004, xii, 14.

 10 A. R. Katritzky and F. Angrish, Steroida, 2006, 71, 600–609.
 17 (a) A. R. Katritzky, E. Todadze, P. Angrish and B. Draghici, J. Org. Chem., 2007, 72, 5794–5801; (b) A. R. Katritzky, P. Angrish, E. Todadze and I. Ghiviriga, Bioorg. Med. Chem. Lett., 2007, 17, 6000–6001; (c) A. R. Katritzky, B. E.-D. M. El-Gendy, E. Todadze, Abdel- and A. A. A. Fattah, J. Org. Chem., 2008, 73, 5442–5445; (d) A. R. Katritzky, L. Khelashvili and M. A. Munawar, J. Org. Chem., 2008, 73, 9171–9173.

^{15 (}a) Alan R. Katritzky, Levan Khelashvili and Munawar Ali Munawar, J. Org. Chem., 2008, 73, 9171–9173; (b) A. R. Katritzky, A. A. A. Abdel-Fattah and R. G. Akhmedova, ARKIVOC, 2005, vi, 329–338; (c) A. R. Katritzky, H. Tao and K. Kirichenko, ARKIVOC, 2007, x, 142–151.

¹⁶ A. R. Katritzky and P. Angrish, Steroids, 2006, 71, 660-669.